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Abstract. We calculate the energy of excitons in parabolic quantum wells using the effective
variational Hamiltonian (EVH) method which allows us to findall energy levels of the exciton by
searching for solutions within a very broad class of trial functions whose form is also subject to
variation. We use the new method to find the exciton binding energy of 1s, 2s and 3s states of an
exciton formed below the ground electron and hole subbands in parabolic quantum wells made of
(Ga, Al)As and (Cd, Mn)Te. We calculate also the binding energies of excitons formed between
excited quantum well levels. The calculations are performed for various values of an external
magnetic field parallel to the growth axis of the heterostructure.

1. Introduction

In the present paper we shall analyse the effect of the presence of a confining potential on
the states and the energy of excitons in III–V and II–VI semiconductor heterostructures.
In structures available now it is possible to observe sharp exciton lines corresponding to
optical transitions between excited states of the interacting electron–hole pair, such as e.g. 3s
exciton states [1–3]. These transitions can be observed both for excitons formed by particles
occupying the lowest quantum well (QW) subbands as well as for the excitons formed by
particles in excited QW subbands. In quasi-two-dimensional heterostructures the problem
of the interacting electron–hole pair is of a great importance because the positions and the
intensities of excitonic lines are frequently used to determine the structure parameters [4].
Recent progress in fabrication of structures containing quantum wells of arbitrary shape, e.g.,
parabolic, half-parabolic or triangular [4–8], resulted in samples with quality sufficient for
observation of a large number of excitonic transitions. This calls for the development of fast,
accurate and reliable theoretical methods of determination of the energies of exciton states
which can be easily applied for various QW structures.

The most common method of calculation of the energy of various exciton states is the
variational method, with the Ritz method and the perturbation approach used less frequently.
All methods have been extensively used in the context of excitons confined in rectangular
QWs [4, 9–15]. The emphasis was on determination of the energy of the lowest state of the
interacting electron–hole pair assuming either 2D or 3D character of its wave function. To
describe the hole kinetic energy, either the effective-mass approximation with the full Luttinger
Hamiltonian [13–15] or a simpler one-band dispersion [4, 9–12] was employed. When the
interface-related effects, such as change of the effective mass or the dielectric constant across
the interface, were taken into account [9, 10], a satisfactory agreement between the exciton
energy calculated theoretically and that observed experimentally was achieved [4].
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In the present work we introduce another method of calculation of the excitonic energy
in the QW heterostructures, which may be applied to quantum wells with arbitrary shape of
the confining potential. The method, the effective variational Hamiltonian (EVH) method,
is a combination of the variational method and the Hartree approximation and it allows us
to calculateall exciton energy levels. Generally, in the EVH method we simplify the initial
problem of an interacting electron–hole-pair Hamiltonian by partially averaging over several
independent variables using a suitably chosen trial function. The function is assumed to be in
the form of a product of two functions (ψφ), of which at least one (sayφ) is to be determined at
later stages of the calculation. The expectation value of the Hamiltonian calculated with the use
of such a trial function,ψφ, approximates from above the eigen-energy of the exciton. The two
main advantages of the EVH method over the variational method that are (i) the EVH method
gives the lowest energy for all exciton states for an entire given class of the trial functions and
(ii) once the effective Hamiltonian is derived, we may calculate its excited states using the same
numerical procedure. The methods based on effective Hamiltonians have been widely used in
statistical physics [16]. The advantage of the use of the effective Hamiltonians for the problem
of excitons was demonstrated by Wu [17], where the excitons in very shallow quantum wells
were considered, and by Pollmann [18], who introduced a self-consistent perturbation method
for partially averaged Hamiltonians.

In the present work we shall illustrate the EVH method by applying it to the problem
of the exciton in parabolic QWs in the presence of an external magnetic field parallel to the
heterostructure growth axis. The choice of the parabolic QW has several motivations: first, in
contrast to the case of excitons in rectangular QWs, the problem of the excitons in parabolic
QWs is less frequently discussed in the literature [5–8, 23]. Yang and Yang [23] calculated
the exciton binding energy using the variational method and analysed the dependence of the
exciton binding energy of the 1s exciton state on the external electric field. Experimental
measurements of the exciton binding energies in parabolic QWs in (Ga, Al)As structures were
performed by Milleret al [6], Gossard [5] and Cheonget al [8] and of those in (Cd, Mn)Te
structure QWs by Wojtowiczet al [7]. Second, the parabolic confining potential allows us
to define several dimensionless quantities which are suitable for parametrizing the exciton
binding energies and eigenstates over a wide range of heterostructure parameters. Finally, in
the case of parabolic QWs the eigenproblem of the effective Hamiltonian appearing in the
EVH method can be partly solved analytically.

The plan of the paper is as follows. In the next two sections we shall formulate the effective
variational Hamiltonian method for excitons in parabolic QWs. In section 4 we propose an
improved version of the EVH method which is applicable to the determination of the exciton
binding energy in wide parabolic quantum wells. In section 5 we compare the values of the 1s
exciton energy obtained using the EVH method with the energy obtained using the variational
method and the method based on Born–Oppenheimer approximation proposed by Leavitt and
Little [19,20]. In the last section we apply the EVH method to determine the exciton binding
energy in two representative semiconductor systems.

2. Assumptions of the model

Consider a heterostructure which contains a single parabolic QW of type I (i.e., with the
electron and hole confined in the same spatial region) in thez-direction. This is achieved
by continuously varying the molar composition of, say, AlxGa1−xAs or Cd1−xMnxTe along
the growth axis with a suitable profile. Hereafter, we shall denote by e.g. Cd1−yMnyTe–
Cd1−xMnxTe the parabolic QW which contains a molar fractiony of Mn atoms at its centre
and a molar fractionx of Mn in its outermost barriers (y < x). Lowering of the symmetry
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along thez-axis removes the degeneracy of the valence band of the material constituting the
heterostructure. The electron–hole Coulomb coupling leads, then, to formation of two exciton
systems, the first associated with the heavy holes (with total angular momentumEJ = 3/2) and
the second with light holes (withEJ = 1/2). Experimentally, the energies of the heavy- and
light-hole excitons are well separated. Therefore in the simplest approximation we shall ignore
the coupling between heavy- and light-hole excitons. In other words, we shall consider only
the diagonal part of the Luttinger Hamiltonian, as is often done in theoretical calculations of the
exciton energy in rectangular QWs [4,9–12,19–22]. The effective masses of the light and the
heavy holes are assumed to be anisotropic. Although such an approximation is in wide use, it
was questioned by Eckenbeck and Altarelli [13]. Peylaet al [20] suggested, therefore, treating
the four effective masses as adjustable parameters of the model. In our EVH method applied
for parabolic QWs, we obtain the exciton binding energy as a function of severaldimensionless
parameters, each being a nonlinear combination of the effective masses, valence band offsets
etc. Therefore, the rigorous definition of the effective-mass values is not of such importance
as in the case of rectangular QWs and a simple rescaling is possible here.

The Hamiltonian of the interacting electron–hole pair in the parabolic confining potential
is

Ĥ = − h̄2

2me

(
∂2

∂x2
e

+
∂2

∂y2
e

+
∂2

∂z2
e

)
− h̄2

2m‖

(
∂2

∂x2
h

+
∂2

∂y2
h

)
− h̄2

2mz

∂2

∂z2
h

− e2

κ|Ere − Erh| + Ve(ze) + Vh(zh). (1)

In the equation above,me stands for the effective mass of the electron,m‖ is the effective mass
of the hole inEx- or Ey-directions,mz is the effective mass of the hole in theEz-direction,κ is a
dielectric constant (assumed to be constant throughout the structure) and the finite parabolic
potentials are defined as

Vi =
{
kiz

2
i for |z| 6 1

2Lw

Ui for |z| > 1
2Lw

(i = e, h) (2)

whereke = 4Ue/L2
w andkh = 4Uh/L2

w are the curvatures of the parabolic potential acting on
the electron and on the hole, respectively.Ue andUh are the discontinuities of the band edges
between the centre of the well and its outermost layers, whileLw is the QW well width.

In writing equation (1), we made use of the following approximations. First, we neglected
thez-dependence of the effective masses of the carriers. For rectangular QWs several authors
included thez-dependence of the masses in the kinetic energy terms assuming linear changes of
the Luttinger parametersγ1 andγ2 with the concentrationx of, say, Al in GaAs–AlxGa1−xAs
QWs. The ensuing correction due to suchz-dependence of the effective masses is small,
and it can be taken into account by suitably averaging the electron and hole masses over the
heterostructure. Possible ways of taking properly averaged effective masses are given in,
e.g., references [9, 19, 22]. Secondly, we neglected also electrostatic effects arising at the
interfaces due to the variation of the dielectric constant withz. We do not expect that these will
introduce sizable corrections. Furthermore, in our calculation we shall approximate the finite
QW potentials for the electrons and the holes by infinite potentials. That is, we shall replace
finite parabolic potentialsVi(zi) (i = e, h) in equation (2) by infinite parabolic potentials
Vi = kiz

2
i . In contrast with the case for rectangular QWs [5], use of the infinite parabolic

potential leads to only small changes of the energies of the electron and the hole confined in
the QW provided that the corresponding energy levels are situated well below the finite-QW
top. The reason for this is that even for the infinite parabolic potential the electron and the
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hole penetrate the barrier to a considerable extent [25]. Formally, if for a given structure
the dimensionless quantity�i = 2miUi(Lw/2)2/h̄2 (i = e, h) is larger than approximately
3, then the difference between the ground-state energies of the finite and the infinite QWs is
negligible [26]. Similarly, for� > 7 a difference between the energies of the first excited states
in the finite and the infinite parabolic QWs nearly vanishes. Note that for the real structures
reported in references [5–8] the parameter� defined above is of the order of 20–60, so the
approximation of the finite QW by the infinite parabolic QW is very good indeed.

3. Formulation of the effective variational method for excitons in parabolic quantum
wells

For parabolic QWs reported in the literature [5–8,23] the separation between the energy levels
of the electron (or hole) confined by the QW is much larger than the excitonic Rydberg.
Because of this fact it is reasonable to factor out in the exciton trial wave function the terms
proportional to the wave functions of the electron (or the hole) in the one-dimensional parabolic
well potential. Then, in the optical experiments only the exciton states with s-like symmetry
are normally observed [11,27] so in this work we limit consideration to these states only. For
s-like exciton states we shall assume the excitonic wave function in the so-called separable
form:

Fm,n(Ere, Erh) = φme (ze)φnh(zh)f (| Eρe − Eρh|) (3)

whereφme (ze) is the wave function of themth state of the electron,φnh(ze) the wave function of
thenth state of the hole in a parabolic QW,Eρi = (xi, yi) (i = e, h), and the exact form of the
functionf (·) is to be determined later. The separable form of the trial exciton wave function
means that the functionf (·), which mixes the electron and hole states, depends neither onze
nor zh, so it depends on four coordinates only (xe, ye, xh, yh). Hereafter, the excitons formed
by the electron in themth state the hole in thenth state of the parabolic QW will be referred
to as(m, n) excitons.

The form ofF(Ere, Erh) suggests that the exciton Hamiltonian (1) can be simplified by a
transformation to the cylindrical coordinates. Let the external magnetic fieldEB be parallel to
thez-axis of the system, so that the vector potential can be chosen asEA = (B/2)(−y, x,0).
Performing the usual transformation of coordinatesxe, xh andye, yh to the centre-of-mass
(X, Y ) and to the relative-motion(x, y) variables, changing the energy unit to the effective
Rydberg Ryd∗ = 2µ‖r2

B/h̄
2 and the length unit to the effective Bohr radiusrB = h̄2κ/(e2µ‖),

we obtain, neglecting the spin,

Ĥ = Ĥρ + ĤB + Ĥze + Ĥzh + ĤCoul (4)

where

Ĥρ = −
(
∂2

∂ρ2
+

1

ρ

∂

∂ρ

)
ĤB = 1

4
γ 2ρ2 Ĥze = −

µ‖
me

∂2

∂z2
e

+ bez
2
e

Ĥzh = −
µ‖
mz

∂2

∂z2
h

+ bhz
2
h ĤCoul = − 2√

ρ2 + (ze − zh)2
whereµ−1

‖ = m−1
e +m−1

‖ andEρ = (x, y). The parameterγ = (eh̄B)/(cµ‖Ryd∗) is the reduced

magnetic field, whilebe = ker
2
B Ryd−1, bh = khr

2
B Ryd−1 are dimensionless curvatures of

the parabolic QW for the electrons and the holes, respectively. In equation (4) we omitted the
centre-of-mass motion in the QW plane since it does not couple to the relative-motion terms
and theϕ-dependent terms.
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Let us now calculate the effective Hamiltonian for the lowest electron and hole states
confined in the parabolic QW. The trial function of equation (3) is then given as

F0,0(Ere, Erh) ≡ F0,0(ρ, ze, zh) = exp(−qez2
e) exp(−qhz2

h)f (ρ) (5)

with f (ρ) yet to be determined and with

qe = 1

2

√
mebe/µ‖ qh = 1

2

√
mzbh/µ‖.

The expectation value of the energy of the system is

E[f ∗(ρ), f (ρ)] =
(∫

exp(−qez2
e − qhz2

h)f
∗(ρ)(Ĥρ + Ĥze + Ĥzh + ĤB + ĤCoul)

× exp(−qez2
e − qhz2

h)f (ρ) dze dzh ρ dρ

)
×
(∫

exp(−2qez
2
e − 2qhz

2
h)f
∗(ρ)f (ρ) dze dzh ρ dρ

)−1

. (6)

In the equation above, the integrals involvinĝHρ , Ĥze , Ĥzh and ĤB (cf., equation (4)) are
straightforward. The double integral over the Coulomb potential can be obtained analytically
in terms of the modified Bessel functionK0(x) [24]. The functionf (ρ) which minimizes
E[f ∗(ρ), f (ρ)] satisfies the eigen-equation

Ĥeff f (ρ) ≡
(
− ∂2

∂ρ2
− 1

ρ

∂

∂ρ
− 2

√
2qa
π

exp(qaρ
2)K0(qaρ

2) +
1

4
γ 2ρ2

)
f (ρ)

= (E − Ee − Eh)f (ρ) (7)

where

qa = qeqh

qe + qh
= 1

2

(
memzbebh

µ‖(mebe +mzbh)

)1/2

(8)

and

Ee =
√
mebe/µ‖ Eh =

√
mzbh/µ‖

are energies of the levels of electrons and holes in the parabolic QW, respectively. The
dimensionless quantityqa defined by equation (8) plays an important scaling role in our theory.
It is a nonlinear combination of the three effective masses and the dimensionless curvatures
be andbh of the electron and hole confining potentials. Note that the effective Hamiltonian
in equation (7) (and so also its eigen-energies) depends onqa andγ , but not directly on the
electron or hole masses. Let us define the exciton binding energyEB asEB = E − Ee − Eh
in the absence of the magnetic field andEB = E − Ee − Eh − (2n + 1)γ for nonvanishing
magnetic field. The Landau level indexn = 0, 1, . . . equals the number of zeros of the
wave functionf (ρ) in the given quantum state. For the exciton wave function of the form
of Fm,n(ρ, ze, zh) = φm(ze)φn(zh)f (ρ) the intensity of the transition is proportional to the
oscillator strengthOm,n [11,27]:

Om,n ∝
(∫

dt φm(t)φn(t)|f (0)|2
)/(∫

|Fm,n(ρ, ze, zh)|2ρ dρ dze dzh

)
. (9)

From equation (9) it follows that for the excitons in a parabolic QW (i) the oscillator strength
is nonzero for s-like symmetric electron-pair states only, wheref (0) 6= 0, and (ii) that the
oscillator strengthOm,n vanishes for the excitons formed by the particles in the states possessing
different parities, i.e. form = n± 1, n± 3, . . . etc.
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Finally let us consider the general case of(m, n) excitons. The trial wave function is then

Fm,n(ρ, ze, zh) = hm(√qeze)hn(√qhzh) exp(−qez2
e − qhz2

h)fm,n(ρ) (10)

wherehn(x) is thenth Hermite polynomial. FunctionsFm,n andFm′,n′ are orthogonal for
m 6= m′, n 6= n′ because of the orthogonality of Hermite polynomials of common arg-
uments [25], so the eigen-energies of the effective Hamiltonian calculated forFm,n(ρ, ze, zh)

approximate from above the energies of(m, n) excitons. Although, it is possible to derive
analytical expressions for effective Hamiltonian corresponding to(m, n) excitons, they are too
long to be presented here. Instead, in the last section we shall present the exciton binding
energy calculated numerically for the case of the(1, 1) exciton.

4. An improved EVH method for excitons in wide QWs

Let us briefly analyse the limiting cases forHeff in equation (7). For largeρ or qa (i.e., for
narrow QW),

K0(x) '
√
π/(2x) exp(−x)

so the term in equation (7) with theK0-function reduces to the Coulomb term(−2/ρ) and
Ĥeff describes the hydrogen atom in two dimensions, with eigen-energiesEB = 4/n2 Ryd,
(n is a positive integer). For smallqa (i.e., for wide QW),K0(x) ∝ ln(x), so forqa → 0
the Coulomb potential term vanishes as

√
qa ln(qa) andĤeff reduces to the Bessel equation

rather than to the equation describing the three-dimensional hydrogen atom. Therefore, we
may expect equation (7) to be a correct approximation of true exciton energies in the case of a
narrow parabolic QW, while it is not suitable for excitons in wide quantum wells. To understand
this fact better, let us consider an exciton in a wide parabolic QW, where the potential energy
of the exciton due to the barriers of the quantum well is a small correction to the energy of
the free exciton in three-dimensional space. In this case the wave function of the exciton in
the QW is very close to the wave function of the exciton in bulk material. In contrast, in wide
quantum wells a trial wave function of the exciton given in equation (3) is too weakly localized
in theze- andzh-directions, because itsze-, andzh-dependent parts decay with characteristic
lengths of the order of 1/

√
qe, 1/

√
qh (cf., equation (5)) rather thanrB . Therefore, in wide

parabolic quantum wells the trial function of the exciton from equation (3) differs significant
from the true wave function of the exciton, which leads to large errors in the determination of
the energy (and so also the binding energy) of the exciton in wide parabolic quantum wells.

To improve the separable-wave-function approximation for excitons in wide quantum
wells, let us replace the functionF(Ere, Erh) from equation (3) by a functionF having the
following properties:

(i) for narrow QW theze-, andzh-dependent parts ofF are close to the wave functions of the
mth andnth states of the electron and the hole in the parabolic QW and

(ii) for wide quantum wells the characteristic lengths of theze-, andzh-dependent parts ofF
are of the order of the exciton Bohr radiusrB .

For (0, 0) excitons a trial function fulfilling the conditions above can be realized as follows:

F0,0(ρ, ze, zh) = exp(−Qez
2
e) exp(−Qhz

2
h)f (ρ) (11)

with Qe andQh being adjustable parameters. Note that in this approximation theze- and
zh-parts ofF0,0 are not eigenfunctions of the electron or hole states in the parabolic QW.
Using a trial function of the exciton given by equation (11), we obtain the so-called improved
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effective Hamiltonian:

Ĥeff (Qe,Qh) = − ∂2

∂ρ2
− 1

ρ

∂

∂ρ
− 2

√
2Qa

π
exp(Qaρ

2)K0(Qaρ
2)

+
1

4
γ 2ρ2 +

µ‖
me
Qe +

be

4Qe

+
µ‖
mz
Qh +

bh

4Qh

(12)

where

Qa = QeQh

Qe +Qh

.

The last four terms in equation (12) describe the average values of the operatorsĤze and
Ĥzh over Gaussian-like trial functions. The minimum of the eigen-energyE of the improved
effective Hamiltonian (12) in theQe–Qh plane approximates from above the true energy of
the exciton.

For narrow parabolic quantum wells,be, bh→∞, so the last four terms of̂Heff (Qe,Qh)

in (12) dominate over the screened Coulomb potential. Therefore the minimum of the exciton
energy occurs for

Qe ' qe = 1

2

√
mebe/µ‖ Qh ' qh = 1

2

√
mzbh/µ‖

i.e., for the same values as in the case the effective Hamiltonian in equation (5). However, for
wide quantum wells wherebe, bh→ 0, bothQe andQh (and so alsoQa) remain finite and the
improved effective Hamiltonian (12) has a nonvanishing Coulomb potential term. The values
of (Qe,Qh) corresponding to the minimum of the energy of the exciton determine the size of
the exciton in theze- andzh-directions, which is of the order of the exciton Bohr radiusrB
even in very wide parabolic quantum wells.

A trial function of the(m, n) exciton in wide quantum wells is (cf., equation (10) and
equation (11))

Fm,n(ρ, ze, zh,Qe,Qh) = hm(
√
Qeze)hn(

√
Qhzh) exp(−Qez

2
e −Qhz

2
h)fm,n(ρ) (13)

where(Qe,Qh) are adjustable parameters andhm(x), hn(x) are Hermite polynomials. If the
functionsFi,j (i = 0, . . . , m; j = 0, . . . , n) are orthogonal, then the eigen-energies of the
effective Hamiltonian calculated usingFi,j approximate from above the energies of the(i, j)
exciton. However, we may not minimize the eigen-energies of(i, j) excitons in theQe–Qh

plane independently from eigen-energies of(i ′, j ′) excitons because the parameters(Qi
e,Q

j

h)

corresponding to the minimum of the eigen-energy of the(i, j) exciton depend on the(i, j)
indices and on the quantum state of theρ-dependent part of the exciton. Thus, for some
(i1, j1) and(i1, j2) excitons (wherei1, i2 = 0, . . . , m; j1, j2 = 0, . . . , n), functionsFi1,j1 and
Fi2,j2 possessing the same parity may be not orthogonal, in view of the lack of orthogonality of
Hermite polynomials of different arguments (cf., equation (13)). Similarly, 1s, 2s, . . . functions
of (i, j) excitons are not orthogonal, if the minimization of the exciton energy with respect to
(Qi

e,Q
j

h) is done independently for 1s, 2s, . . . states.
To ensure the proper orthogonality of all states of the exciton within the improved EVH

method, we propose the following approach. First, we calculate the effective Hamiltonian
(12) for the 1s state of(0, 0) excitons. Next, we find values(Q0

e,Q
0
h) which minimize

the eigen-energy of this Hamiltonian (i.e., the energy of the 1s state). Then in calculating
the energies of 1s, 2s, 3s, . . . states of(i, j) excitons(i = 0, . . . , m; j = 0, . . . , n) we
use the parameters(Q0

e,Q
0
h). This procedure ensures both the proper behaviour of the

exciton trial wave functions in theze-, zh-directions and the orthogonality of the functions
Fi,j for i = 0, . . . , m; j = 0, . . . , n, because theze- and zh-dependent parts ofFi,j
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(i = 0, . . . , m; j = 0, . . . , n) are Hermite polynomials withcommonvalues of(Q0
e,Q

0
h).

The procedure described above is used in section 6 to determine the energies of 2s excitons
within the improved EVH method.

5. Comparison of results from the EVH and other methods of calculation

In the variational method proposed by Yang and Yang [23] the trial function of the 1s state of
the(0, 0) exciton was chosen in the form

Fvar(ρ, ze, zh) = exp(−qez2
e − qhz2

h) exp

(
−ρ
λ

)
(14)

whereqe, qh have their previous meanings andλ is the variational parameter. In the absence
of the magnetic field the energy of the system is then

E = min
{λ}

[
1

λ2
− 8

λ2

√
2qa
π

∫ ∞
0
ρ dρ exp(qaρ

2)K0(qaρ
2) exp

(
−2ρ

λ

)]
. (15)

In the method proposed by Leavitt and Little [19,20] the wave function of the 1s state of
the(0, 0) exciton is assumed to be

G(Ere, Erh) = exp(−qez2
e − qhz2

h)g(ρ, |ze − zh|). (16)

The exciton binding energy as calculated within the Born–Oppenheimer approximation for
B = 0 is

E =
√

2qa
π

∫ ∞
−∞

dz exp(−2qaz
2)E2D(|z|). (17)

For 1s excitons the functionE2D(|z|) was parametrized by Leavitt and Little [19], while for
2s, 3s and 4s excitons it was parametrized by Peylaet al [20].

In figure 1 we show the binding energy of the 1s state of(0, 0) excitons obtained using the
EVH method, the improved EVH method (assuming equal masses and valence band offsets for
the electrons and the holes), the variational method and the Leavitt and Little method. Note first
that the binding energy calculated using the EVH method isgreaterthan the binding energy
found using the variational calculation. This confirms the expectation of the EVH method
giving the best results within a givenclassof trial functions—e.g., the class of separable wave
functions, equation (3). Secondly, for small values ofqa, which corresponds to wide quantum
wells, the improved EVH method gives larger binding energy than the normal EVH method.
For narrow wells (i.e. largeqa) the two methods lead to the same results, which agrees with
the analysis from the previous section. Thirdly, the EVH method gives an upper estimate of
the true value of the quantum state while the Leavitt and Little method estimates the energy of
the quantum state from below. We see in figure 1 that the difference between the two results
is rather small, so both methods approximate the true value of the exciton binding energy with
high accuracy. The method proposed by Leavitt and Little is more convenient for calculating
the energy of(0, 0) excitons in the absence of the magnetic field. This is because a simple
parametrization ofE2D(z) exists [19, 20]. In the case of the nonvanishing magnetic field the
two methods are comparable as regards numerical effort, since in both of them one has to find
eigenvalues of a one-dimensional differential equation.

6. (0, 0) and (1, 1) exciton energies in real structures

The eigen-energies and the eigenstates ofĤeff were calculated numerically using the shooting
method [28]. In this method, we choose a trial value of the eigen-energyE

(1)
B and solve
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Figure 1. The binding energy of the 1s(0, 0) exciton calculated using the EVH approximation
(solid line), the improved EVH approximation assuming equal masses and the valence band offsets
for the electron and the hole (solid–crosses line), the usual variational method (dashed–points line)
and the method proposed by Leavitt and Little (Born–Oppenheimer approximation).

the differential equation using the fourth-order Runge–Kutta method. For s-symmetric
states of the Hamiltonian (4), the boundary conditions for the solutions of the differential
equation aref (0) = c (c 6= 0) and, in order of ensure the continuity off (ρ) at ρ = 0,
(df (ρ)/dρ)

∣∣
ρ=0 = 0 . For largeρ a square-integrated solution of equation (4) decays to zero,

so by analysing the behaviour off (ρ) for largeρ we may easily recognize whether a trial value
E
(1)
B overestimates or underestimates the true value ofEB . Then, we choose a new value of the

eigen-energy,E(2)B , and repeat the calculations. Using a bisection method we can bracketEB

with arbitrary accuracy. In our calculation we performed 16 iterations with trial values ofE
(n)
B ,

which gives a relative accuracy in the determination ofEB of the order of 10−4 of the initial
range of〈EminB , EmaxB 〉. We found eigen-energies and eigenstates of the effective Hamiltonians
for 1s, 2s, 3s and 4s states in this way.

In figure 2 we showEB (in effective Rydberg units Ryd∗) versusqa for 1s, 2s and 3s states
of the (0, 0) exciton forγ = 0 and forγ = 1.0. All curves in figure 2 can be parametrized
using a formula

EB =
3∑
n=0

ant
n t = ln(qa) (18)

where thean are coefficients of the fitting polynomial. The parametrizations of the exciton
binding energy from equation (18) can be applied to the determination of the exciton binding
energy for wide wells within the improved EVH method. Indeed, for a wide parabolic well
the exciton binding energy can be obtained as (cf., equation (12))

EB = min
{Qe,Qh}

{
3∑
n=0

ant
n +

µ‖
me
Qe +

be

4Qe

+
µ‖
mz
Qh +

bh

4Qh

}
t = ln

(
QeQh

Qe +Qh

)
(19)
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Figure 2. The dimensionless exciton binding energy for 1s, 2s and 3s(0, 0) exciton states. Solid
lines from bottom to top: the 1s exciton energy forγ = 0 andγ = 1. Dashed–points lines from
bottom to top: the 2s exciton energy forγ = 0 andγ = 1. Dashed lines from bottom to top: the
3s exciton energy forγ = 0 andγ = 1.

which is a rather simple numerical task. The method of calculation of the energy of excited
states of the electron–hole pair within the improved EVH method was discussed in section 4.

Table 1. Material parameters for GaAs–Al0.3Ga0.7As and CdTe–Cd0.22Mn0.78Te.

Quantity Symbol CdTe–Cd0.22Mn0.78Te GaAs–Al0.3Ga0.7As

Electron mass me 0.095m0 [7] 0.0667m0 [8]

In-plane heavy-hole mass mh‖ 0.5m0 [20] 0.115m0 [20]

Heavy-hole mass along the growth direction mhz 0.65m0 [7] 0.34m0 [20]

Dielectric constant κ 10.6 [29] 12.15 [20]

Valence band offset Qv 0.4 [7] 0.35 [8]

Total QW depth Ue +Uh 1260 meV [7] 380 meV [20]

As an example of the application of the numerical results of figure 2 we use them in
the determination of the(0, 0) exciton binding energies of 1s and 2s heavy-hole excitons in
GaAs–Al0.3Ga0.7As and CdTe–Cd0.22Mn0.78Te structures. The material parameters taken for
the calculation of the binding exciton energy are listed in table 1. For these structures we
plotted in figure 3 binding energies and transition energies for the 1s and 2s states of the
heavy-hole exciton as a function of the quantum well width. Solid and points–solid lines show
the values of the exciton binding energy for the 1s state of the exciton calculated using the
EVH (solid lines) and improved EVH methods (points–solid lines). The dotted lines show the
transition energiesE1s−2s for transitions between 1s and 2s states of the exciton in the EVH
approximation. A triangle and squares represent experimental data from references [7,8].

For the GaAs–Al0.3Ga0.7As parabolic quantum well of width≈1000 Å reported on in
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Figure 3. The exciton binding energy versus the finite parabolic QW width for the heavy-hole
(0, 0) exciton in GaAs–Al0.3Ga0.7As and CdTe–Cd0.22Mn0.78Te heterostructures. The material
parameters are taken from table 1. Solid lines: the EVH approximation. Solid–points lines: the
improved EVH method. Dotted lines: the transition energyE1s−2s for transitions between 1s and
2s states of the exciton. Triangle: the experimental value of the energyE1s−2s, after reference [8];
squares: the experimental 1s-exciton binding energy, after reference [7].

reference [8] we found the transition energyE1s−2s to beE1s−2s= 4.8 meV, which is in very
good agreement with experimental data. For the CdTe–Cd0.22Mn0.78Te structures analysed
in reference [7] we compared our results with 1s-exciton binding energies of quantum wells
with widths of 41, 62, 82 monolayers which corresponds to widths of 133 Å, 201 Å and
266 Å, respectively. For the heavy-hole mass we assumedmh‖ = 0.5m0 found experimentally
in [20] for magnetoexcitons in CdTe/Cd(Zn)Te rectangular quantum wells. There is also a
good agreement between our theory and experimental results. Small discrepancies between
them arise, possibly, from uncertainties in the values of the effective masses, valence band
offsets and dielectric constants for CdTe and Cd1−xMnxTe compounds. From figure 3 we
note that for parabolic quantum wells fabricated today and reported on in references [5–8], the
binding energy of excitons calculated using the EVH method is very close to that found using
the improved EVH method. The difference between the two methods is visible only for very
wide quantum wells, where the exciton binding energy calculated using the improved EVH
method is as much as 20% larger than the binding energy obtained using the EVH method.

Finally, in figure 4 we calculated the energy of(1, 1) excitons in GaAs–Al0.3Ga0.7As
heterostructures. This energy was calculated for 1s states of heavy-hole excitons forB = 0,
B = 5 T andB = 15 T. We assume the trial wave function of the(1, 1) exciton in the form

F1,1(ρ, ze, zh) = zezh exp(−qez2
e − qhz2

h)f1,1(ρ). (20)

Note, that for(1, 1) heavy-hole excitons the binding energies aresmaller than the binding
energies for(0, 0) excitons. In the absence of the magnetic field the difference is of the order
of 2 meV, i.e., of the order of 20%–25% of the exciton binding energy. For magnetic fields
of B = 15 T the difference between the(0, 0) and (1, 1) exciton energies is of the order
of 4 meV. The positions of the higher exciton peaks in parabolic quantum wells were used
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Figure 4. Comparison of the binding energies of the 1s heavy-hole exciton in GaAs–Al0.3Ga0.7As
formed by particles in(0, 0) parabolic QW subbands (solid–points lines) and of that formed by
particles in(1, 1) subbands (solid lines). The calculation is done for three values of the magnetic
field: B = 0,B = 5 T,B = 15 T, respectively, from bottom to top.

in references [7, 8] in the determination of the valence band offsets in CdTe–Cd1−xMnxTe
and GaAs–AlxGa1−xAs heterostructures. In both works the authors assumed that the binding
energy of the exciton formed by particles from excited states of the parabolic QW equals the
binding energy of the(0, 0) exciton. From figure 4 we see that such an approximation is not
justified and the differences between the values for(0, 0) and(n, n) excitons (n > 0) have to
be taken into account in precise determinations of the material parameters from the positions
of the excitonic peaks in photoluminescence spectra of parabolic quantum wells.

Let us briefly summarize this paper. We proposed a new method of calculation of the
binding energy of excitons confined in one-dimensional quantum well potentials. We applied
this method in the determination of energy levels of the excitons in parabolic QWs. We
compared the values of the exciton binding energies in real structures with experimental data
and we found good agreement between them. The EVH method introduced in this paper
allows for fast and accurate determination of the whole spectrum of exciton states in quasi-
two-dimensional heterostructures. This feature of the EVH method looks very promising for
future applications of this method for other confining potentials which occur in newly fabricated
structures.
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